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Abstract

We present a method of moment (MoM) analysis technique allowing to model overmoded transverse magnetic (TM)

cavities in two dimensions. This technique uses the single series form of the Green�s function of the empty cavity. The

convergence behaviour of this series is analysed in detail.
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1. Introduction

Our original idea, when we developed a method of moment (MoM) technique to model two-dimensional
(2D) cavities [1], was to attempt to accurately model reverberation chambers, only relying on Maxwell�s
equations and not on some additional hypotheses, such as a statistical behaviour of the fields within the

cavity. Little research has been performed in this non-statistical analysis – probably due to the computa-

tional complexity of the problem, especially at high frequencies – although reverberation chambers have

grown more popular over the past years.

Indeed, reverberation chambers have become a classical test environment for high frequency electro-

magnetic compatibility (EMC) measurements [2–4] and the extension of their use for lower frequency

applications has recently been studied [5,6].
The purpose of this instrument is to obtain a large, homogeneous and isotropic field within an over-

moded cavity. For large structures, the exact field behaviour will strongly depend on the exact boundary

conditions. The averaging of the fields is normally obtained using one or more slowly rotating stirrers. The
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fields in the chamber can then be described as statistical quantities, where each stirrer position represents a

statistical sample. It is in this statistical sense that the fields can be considered approximately homogeneous

and isotropic.
Besides classical mechanical stirring, the alternative of electronic mode stirring exists [7,8], where the

averaging of the field distribution within the chamber is obtained using a broadband excitation signal.

Some also claim the possibility of an intrinsic reverberation chamber [9], where no mechanical or electronic

stirring would be required. This is more questionable as no averaging process is present in this case,

contrarily to the vibrating intrinsic reverberation chamber [10–12], where the vibrating walls provide a kind

of mechanical stirring.

Generally, reverberation chambers are characterised by measurements [13] or models assuming a sta-

tistical behaviour of the fields inside the chamber [14–20], possibly in combination with other methods, such
as the method of moment (MoM) [21]. In [22,23] the Q-factor of a chamber is derived, starting from the

assumption of statistically uniform fields within the chamber. In [24,25] the statistical information about

the fields is derived from plane-wave spectrum theory.

Besides these statistical models, several – but less numerous – attempts have been made to model re-

verberation chambers using classic electromagnetic techniques. Three-dimensional (3D) ray-tracing [26,27]

and geometrical theory of diffraction (GTD) [28] have been used at the high frequency end of the spectrum.

At the lower end of the frequency spectrum – chamber dimensions smaller than 5k – we find 3D MoM

[29,30], 3D finite elements method (FEM) [31,32], 3D transmission line matrix (TLM) [33] (this method was
even extended to higher frequencies in [34], where the chamber dimensions are of the order of 10k) or even
circuit models [32]. However, it is difficult to use these methods at higher frequencies as the required

computer memory and computation times would increase dramatically.

The most popular modelling technique for reverberation chambers is, without contest, the finite-dif-

ference time-domain (FDTD) method [11,12,27,32,35–41]. The main advantage of this technique is that it

allows to compute the full frequency response of the structure in a single run. The main drawback is

probably the difficulty to cope with the high quality factor of a typical empty reverberation chamber, which

would lead to unacceptably long computation times. This problem is generally circumvented by increasing
the losses in the chamber – using a lossy dielectric or lossy chamber walls – which reduces the Q-factor. A

first analysis of the effect of these fictitious losses on the characterisation of the chamber has been made in

[42]. This convergence problem is less important for cavities loaded with a lossy object.

In order to reduce computational requirements, but still to obtain some understanding of the behaviour

of reverberation chambers, some authors have restricted their analysis to a 2D approximation. This has

been the case using TLM in [43], or using FEM in [44–49] for relatively low frequencies (maximal chamber

dimension smaller than 10k).
The method we present here is also a 2D approximation, but based on the MoM [1]. We consider the

pure TM problem, with constant longitudinal line currents as excitation sources. Instead of considering

the free space Green�s function, we use the Green�s function of the cavity. This avoids the discretisation of

the cavity walls, strongly reducing the number of unknowns, which is desirable for analysis at higher

frequencies. The price we have to pay is a series expression instead of a closed form for the Green�s
function.

We derive the integral equations for the electric field as a function of the (unknown) longitudinal cur-

rents on the conductors within the chamber. Discretising the current on the conductor boundaries and

weighting the integral equations, we obtain a discrete set of equations. The expressions for the interaction
and excitation integrals in this set of equations are series of analytically computed terms. Depending on the

convergence behaviour of the series, they can be computed as a partial sum or using a Shanks transfor-

mation [50,51] to accelerate convergence. If these simple methods prove insufficient, we transform the series

using the Veysoglu integral transform [52,53]. The criteria to choose the appropriate series calculation

technique are discussed.
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We validate the implementation of this method by comparing the obtained results at low frequencies with

those obtained using CONCEPT II, a 3DMoM electromagnetic simulation tool developed at the Technische

Universit€at Hamburg-Harburg [54]. Finally, we also show some results obtained at higher frequencies.
The first results obtained with our modelling technique were presented in [55], but they showed dis-

crepancies with generally observed results: the computed statistical distributions of the components of the

observed field did not match a normal distribution, as would be expected in a real reverberation chamber.

The causes of these differences probably lie in (some of) the approximations we have made to keep our

model computable: a 2D transverse magnetic (TM) model, the absence of losses and the restriction to

conductor boundaries parallel with the cavity walls, zero-bandwidth, etc. In future work we hope to

overcome some of these restrictions, but not all of them can be lifted easily. Introducing losses for the

conductor boundaries will probably only require a minor adaptation of the model, while considering skew
conductor boundaries will strongly increase the mathematical complexity of the obtained expressions.

Other modifications, like introducing losses on the cavity boundaries or a 3D modelling, cannot be con-

sidered as an adaptation of the presented technique, but will require a different approach of the problem.

However, even with its limitations, our method is valuable to explore the high frequency behaviour of

the fields and to examine the transition from deterministic to apparently stochastic behaviour – in fact, the

behaviour remains deterministic but, due to the extreme sensitivity to changes in the geometry or the

frequency, it seems statistical.
2. Geometry

We consider a 2D structure as shown in Fig. 1. It is invariant in the longitudinal direction – the z-di-
rection – and has a width a and a length b. The walls of the cavity are assumed perfectly conducting. The

excitation is caused by the Ne constant longitudinal line currents Ii located at rI;i (16 i6Ne). We shall

compute the currents induced on a set of No test objects, which are perfect conductors with boundary ca
(16 a6No).

We impose the restriction that the boundaries of the conductors be piecewise parallel with one of the

sides of the cavity, as shown in Fig. 1. This will strongly reduce the mathematical complexity of the

computations.
Fig. 1. Geometry of a 2D TM cavity.
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3. The method

3.1. Green’s function and integral equation

For the 2D structure shown in Fig. 1, the 2D Maxwell equations – fields invariant in the z-direction –

reduce to the pure TM case:

r2
trEz þ k2Ez ¼ jxlJz; ð1Þ
oEz

oy
¼ �jxlHx; ð2Þ
oEz

ox
¼ jxlHy ; ð3Þ

where k ¼ x
ffiffiffiffiffi
�l

p
and where r2

tr ¼ ðo2=ox2Þ þ ðo2=oy2Þ is the transverse Laplace operator. The longitudinal

componentof themagneticfield (Hz) aswell as the transversal componentsof theelectricfield (Ex andEy) are zero.

From (1) we can derive the equation for the Green�s function of these TM equations

r2
trGðro j reÞ þ k2Gðro j reÞ ¼ jxldðro � reÞ; ð4Þ

where ro ¼ ðxo; yoÞ and re ¼ ðxe; yeÞ represent the coordinates of, respectively, an observation and an ex-

citation point.

The Green�s function obeying the boundary conditions of the empty cavity – Ez ¼ 0 at the walls – can be

written as a simple series [56] (instead of the more traditional double series):

G ro j reð Þ ¼ � jxl
a

X1
m¼1

sin pmxo
a

� �
sin pmxe

a

� �
kðaÞm sinðkðaÞm bÞ

cos kðaÞm bð
��

� ðyo þ yeÞÞ
�
� cos kðaÞm bð

�
� jyo � yejÞ

��
ð5Þ

¼ � jxl
a

X1
m¼1

gðaÞm ro j reð Þ; ð6Þ

where kðaÞm is defined as

kðaÞm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
c

� 	2

� pm
a

� 	2
r

: ð7Þ

The expression gðaÞm can be understood as a kind of modal Green�s function corresponding to the TMm;�-
modes of the 2D cavity.

From (1) and (4) we derive an expression for the longitudinal electric field Ez at an arbitrary observation

point ro within the cavity as a function of the unknown current density Jz;a on the conductor boundaries ca
and of the excitation currents Ii

EzðroÞ ¼
XNe

i¼1

IiGðro j rI ;iÞ þ
XNo

a¼1

I
ca

Gðro j reÞJz;aðreÞ dce; ð8Þ

where the first term represents the direct contribution from each line current excitation i (16 i6Ne), located

at an excitation point rI ;i, while the second term represents the contribution from the induced currents.

We discretise the conductor boundaries in ne excitation segments and no observation segments. The

current density is approximated by a pulse basis function on each excitation segment, yielding a piecewise
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constant current density approximation. The electric field boundary condition (Ez ¼ 0) is imposed at the No

conductor boundaries and is weighted over each observation segment using pulse weighting functions.

From this, we obtain a discrete set of equations from (8)

Xne
k¼1

ZjkJz;k ¼ �
XNe

i¼1

Vi;j ð16 j6 noÞ; ð9Þ

where Jz;k is the current density amplitude at excitation segment k and where the interaction (Zjk) and
excitation (Vi;j) matrix elements are defined as

Zjk ¼
Z
s
wjðsÞ

Z
s0
bkðs0ÞGðroðsÞ j reðs0ÞÞ ds0 ds; ð10Þ

Vi;j ¼ Ii

Z
s
wjðsÞGðroðsÞ j rI ;iÞ ds; ð11Þ

where s is a length parameter along the observation segments and s0 is a length parameter along the ex-

citation segments. We use the notation bk for the basis function corresponding to excitation segment k, and
the notation wj for the weighting function corresponding to observation segment j. As announced before,

we shall use pulse functions for both bk and wj. This means that bk and wj are equal to one on excitation

segment k, respectively, on observation segment j and zero elsewhere.

It is not necessary that excitation and observation segments coincide. We may choose to consider more
observation segments than excitation segments to obtain an overdetermined set of equations, which can be

solved in the least-squares sense. The overdetermination of the equation set should guarantee a better

numerical stability, as the system may be ill-conditioned, especially at high frequencies.
3.2. Modal integrals

In the same way as we could write the Green�s function as a series of modal Green�s functions (6), we can
rewrite the interaction integrals (10) as a series of modal integrals

Zjk ¼ � jxl
a

X1
n¼1

zðaÞjk;m; ð12Þ

where

zðaÞjk;m ¼
Z
s
wjðsÞ

Z
s0
bkðs0ÞgðaÞm ðroðsÞ j reðs0ÞÞ ds0 ds: ð13Þ

And similarly, we can rewrite the excitation integrals (11) as the following series:

Vi;j ¼ � jxl
a

Ii
X1
n¼1

vðaÞi;j;m; ð14Þ

where

vðaÞi;j;m ¼
Z
s
wjðsÞgðaÞm ðroðsÞ j rI;iÞ ds: ð15Þ

The modal interaction (13) and excitation (15) integrals are computed analytically. In the following, we

shall focus on a particular type of modal interaction integral. More details about the computation of other

modal interaction or excitation integrals can be found in Appendixes A and B of this paper.
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We consider the case of a modal interaction integral where both interaction and observation segment are

parallel with the x-axis. In this configuration, using the expression for gðaÞm ðro j reÞ from (5) and (6), and

performing the double integration (over the variables x0 and x) from (13), we obtain after some straight-
forward calculation the modal interaction integral

zðaÞXoXe;m ¼
cos kðaÞm ðb� ðyo þ yeÞÞ

� �
� cos kðaÞm ðb� jyo � yejÞ

� �
2 pm

a

� �2
kðaÞm sin½kðaÞm b�

� cos
pm
a

ðxo2
�n

� xe2Þ
	
þ cos

pm
a

ðxo2
�

þ xe2Þ
	

þ cos
pm
a

ðxo1
�

� xe1Þ
	
þ cos

pm
a

ðxo1
�

þ xe1Þ
	

� cos
pm
a

ðxo2
�

� xe1Þ
	
� cos

pm
a

ðxo2
�

þ xe1Þ
	

� cos
pm
a

ðxo1
�

� xe2Þ
	
� cos

pm
a

ðxo1
�

þ xe2Þ
	o

; ð16Þ

where ðxe1; yeÞ and ðxe2; yeÞ, respectively, are the start and the end coordinates of the considered excitation

segment, and where ðxo1; yoÞ and ðxo2; yoÞ, respectively, are the start and the end coordinates of the con-
sidered observation segment.

This modal interaction integral becomes infinite if for some value m0 of the index m, kðaÞm0
¼ n0p, where

both m0 and n0 are non-zero. This coincides with a resonance frequency fm0;n0 of the empty cavity

fm0;n0 ¼
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

a

� 	2

þ n0
b

� 	2
r

: ð17Þ

However, these resonance frequencies are not necessarily the resonance frequencies of the cavity in which

test objects are present. Indeed, the singularity occurs in all excitation (14) and interaction (12) integrals,

which means it can be removed from both the left- and the right-hand side of the set of equations (9),

yielding finite solutions for the current density on the conductor boundaries. Only when the interaction

matrix Zjk in the left-hand side of the set of equations (9) becomes singular, will the current density Jz
become unbound. This occurs at the resonance frequencies of the loaded cavity.

We should also notice that the case kðaÞm0
¼ 0 does not yield a singularity in the expression for the modal

interaction integral (16), as was to be expected as no TMm0;0 modes exist for the empty cavity.
3.3. Series computation

For sufficiently low values of the modal order m (m6 2fa=c), the parameter kðaÞm in (16) is real and the

convergence of the series is dominated by the 1=m2 factor, which is a very slow decay. This means that all

lower order terms in the series will have to be computed explicitly.

For large values of the mode order m, the value of the parameter kðaÞm in (16) becomes purely imaginary.

This means that for sufficiently large values of m, the terms in (16) will behave as

C
exp � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p� 	
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p cosðmcÞ; ð18Þ

where C is a constant factor, independent of the mode index m, and where the parameters a, b and c will

define the convergence behaviour of the series:
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a ¼ 2fa
c

; ð19Þ
06 b6 2p
b
a
; ð20Þ
06 jcj6 2p: ð21Þ

As long as the product ab in (18) is sufficiently large – e.g. larger than 5 – the convergence of the series is

sufficient to allow direct computation.

For smaller values of ab, acceleration techniques may be useful or even necessary. If the parameter c is
not too small – j sin cj > 0:1 – the oscillations in the series terms are sufficiently rapid to allow for an ef-

ficient use of classical series acceleration techniques, such as the Shanks transformation [50,51]. We should
note that small values for ab also occur at high frequencies, for example when excitation and observation

segments are near to each other.

However, when both ab and c are small, a series as (18) will have slowly converging, slowly oscillating

terms. Such a series cannot easily be computed using direct computation or classical series acceleration

techniques. These techniques are known to fail on such series.

For this kind of series, we use a variant of the Veysoglu transformation described in [52,53]. This

technique transforms an oscillating series into an integral expression

X1
m¼1

e�jcmF ðmÞ ¼ e�jc

Z þ1

�1

f ðuÞe�u

1� e�ue�jc
du; ð22Þ

where f ðuÞ is the inverse Laplace transform of F ðsÞ

f ðuÞ ¼ L�1½F ðsÞ�ðuÞ ð23Þ

or

F ðsÞ ¼ L½f ðuÞ�ðsÞ ¼
Z þ1

�1
f ðuÞe�su du: ð24Þ

We can generalise the principle of this transformation to series tails (i.e. series with a start index p different

from 1), taking into account that

X1
m¼p

e�jcmF ðmÞ ¼ e�jcðp�1Þ
X1
m¼1

e�jcmF ðmþ ðp � 1ÞÞ ð25Þ

and that

f ðuÞe�ðp�1Þu ¼ L�1½F ðsþ ðp � 1ÞÞ�ðuÞ ð26Þ

we can then apply (22), which yields

X1
m¼p

e�jcmF ðmÞ ¼ e�jcp

Z þ1

�1

f ðuÞe�pu

1� e�ue�jc
du: ð27Þ

Taking the real and imaginary parts of (27), we finally obtain
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X1
m¼p

cosðcmÞF ðmÞ ¼
Z þ1

�1
FCðc; p; uÞf ðuÞe�pu du; ð28Þ
X1
m¼p

sinðcmÞF ðmÞ ¼
Z þ1

�1
FSðc; p; uÞf ðuÞe�pu du; ð29Þ

where the functions FC and FS are defined as

FCðc; p; uÞ ¼
cosðcpÞ � cosðcðp � 1ÞÞe�u

1� 2e�u cos cþ e�2u
; ð30Þ
FSðc; p; uÞ ¼
sinðcpÞ � sinðcðp � 1ÞÞe�u

1� 2e�u cos cþ e�2u
: ð31Þ

Applying this transformation on the series tail starting at index value p with the terms given in (18) yields

X1
m¼p

cosðmcÞ
exp � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p� 	
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p ¼
Z þ1

b
e�ðp�aÞuFCðc; p; uÞF ðaÞ

XX ;mða; b; uÞ du; ð32Þ

where eauF ðaÞ
XX ;m is the inverse Laplace transform of the non-oscillating part of (18). This function is found

(for uP b) to be (cf. [57])

F ðaÞ
XX ;mða;b; uÞ ¼ e�auL�1

exp � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p� 	
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p

2
4

3
5ðuÞ; ð33Þ

¼ e�au

Z u

b
ðu� tÞI0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � b2

q
 �
dt; ð34Þ

where I0 stands for the modified Bessel function of the first kind of order zero. For values of u < b, the
function is zero.

At first sight, it may seem a rather questionable progress to have transformed an ill-converging series

into a double integral with a quite awkward integrand. Indeed, neither the integrand in the right-hand side

of (34), neither the function FC, behave in such a way to make an automatic integration easy, showing

discontinuities or near-discontinuities in higher order derivatives, especially for small values of ab and c.
This is the reason why we have chosen not to compute the inverse Laplace transform (34) directly, but

rather from the following series expansion:

exp � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

ph i
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p ¼ 1

s2
X1
n¼0

b2n

ð2nÞ! ðs
2 � a2Þn�1=2 � 1

s2
X1
n¼0

b2nþ1

ð2nþ 1Þ! ðs
2 � a2Þn: ð35Þ

The inverse Laplace transform of this series expansion (35) is easily obtained

F ðaÞ
XX ;mða;b; uÞ ¼ � e�auðauÞ sinðabÞ

a2
þ 1

a2
X1
n¼0

ð�1Þn ðabÞ
2n

2n n!
ðauÞ e�au

Z au

0

InðvÞ
vn

dv

(
� e�au In�1ðauÞ

ðauÞn�1

)

þ f ðaÞ
XX ;mða; b; u; d; d0; dð2Þ; . . .Þ; ð36Þ
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where the notation f ðaÞ
XX ;mða; b; u; d; d0; dð2Þ; . . .Þ stands for a sum of terms containing Dirac distributions

and their derivatives. For strictly positive values of b it is obvious that this term does not contribute to

the value of the integral (32) and for b ¼ 0, this term vanishes. This is discussed in more detail in
Appendix C.

This series converges rapidly for not too large values of ab – e.g. smaller than 5 – whatever the value of c.
Furthermore, it can be efficiently computed using a generalised Clenshaw�s recurrence formula [58] applied

on the recurrence formulas for modified Bessel functions [59]

Im�1ðzÞ ¼
2m
z
ImðzÞ þ Imþ1ðzÞ ð37Þ

and for the integral expression in (36)Z z

0

Imþ1ðtÞ
tmþ1

dt ¼ 1

2mþ 1

Z z

0

ImðtÞ
tm

dt
�

� Imþ1ðzÞ
zm


: ð38Þ

To be able to compute these series, we only need a sufficiently accurate implementation of the modified

Bessel functions of the first kind of order zero (I0) and of order one (I1), as well as an implementation of the

primitive function of the modified Bessel function of the first kind of order zero (
R u
0
I0ðtÞ dt). As we only

need to compute these functions for real valued arguments, these can be easily obtained or created.

Finally, the integration (32) is computed using a very simple adaptive integration scheme – no Gauss-like

integration is used – allowing a nearly arbitrary precision and overcoming the not so smooth behaviour of

the integrand.
3.4. CPU time requirements

Obviously, in this modelling technique, the computation of the interaction integrals will be the most time

consuming part of the simulation. At sufficiently high frequencies – cavity dimensions larger than 10k – the

computation of a single series (12) is proportional to the frequency f . On the other hand, the number of

interaction integrals to be computed is proportional to f 2, as the number of basis functions should be

proportional to the frequency, according to a rule of thumb of at least 8–10 discretisations per wavelength.
This means that the global computation time for our method is proportional to f 3.

In a traditional 2D MoM simulation, where the walls of the cavity also have to be discretised, we still

have a number of basis functions proportional to the frequency. However, this number will be significantly

larger than in our method, where the large cavity walls did not need to be discretised. As the computation

of the interaction integrals in a traditional 2D MoM simulation is significantly easier and more rapid than

in our model, the most time consuming factor of the simulation in this case is no longer necessarily the

computation of the interaction integrals. The critical part of the simulation might be – at sufficiently high

frequencies — the inversion of the interaction matrix, which requires a computation time proportional to
f 3.

Our method will be especially advantageous to use when the objects within the cavity are small com-

pared to the cavity dimensions. In this case, the number of unknowns required in our method will be vastly

smaller than the number required in a traditional MoM simulation and the total computation time will be

strongly reduced.

However, if the cavity contains (many) large objects, the number of unknowns could be reduced by less

than a factor 2. If this is true, using a traditional MoM modelling technique will probably be a better

choice, as the reduced number of unknowns will not outweigh the increased complexity of the computation
of the interaction integrals.
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4. Numerical results

4.1. Validation

We compare the results obtained at low frequencies with our modelling technique to those obtained

using a commercial three-dimensional full wave electromagnetic solver, based on the MoM: CONCEPT II,

developed at the Technische Universit€at Hamburg-Harburg [54].

The considered geometry is shown in Fig. 2. The 2D cavity is 0.707 m long by 0.5 m wide. A 1 A ex-

citation line current source (I1) is placed in the symmetry plane of the cavity at a distance of 0.4017 m from

the left wall. The device under test (DUT) is a small square conductor (c1) with side 1 mm and with its

centre located in the same symmetry plane as the excitation line current, at a distance of 0.18 m from the left
wall.

For the 3D model, we chose a 0.12 m height for the cavity. The excitation source is here replaced by a

wire with radius 0.5 mm carrying a 1 A impressed current. The DUT is replaced by another wire with radius

0.5 mm. Both wires are 0.12 m long, connecting top and bottom of the 3D cavity. As the excitation current

is invariant in the z-direction, this 3D configuration should be equivalent to the 2D configuration of our

modelling technique. The discretisation was chosen to be sufficiently accurate up to 1 GHz (using the

k=8-rule).
Fig. 3 shows the amplitude of the current – 0 dB corresponds to 1 A – induced on the DUT for a

frequency range up to 1 GHz. We used a 1MHz frequency step for the simulation with our 2D method,

while for the 3D simulations, we used an adaptive frequency sampling technique [60,61], which allows an

accurate simulation over a wide frequency band with a sufficiently fine resolution and a limited number of –

non-equally spaced – frequency points.

Both methods yield very similar results. The maximal difference between both graphs is of the order of 1

dB. Two factors can explain this difference. First, we used a round wire with diameter 1 mm in the 3D

model, while we used a square conductor with side 1 mm in the 2D model. Second, 1 dB proved to be a

rather typical error margin for simulations using CONCEPT II with not too fine discretisations. We also
notice a slight shift toward higher frequencies of the resonance frequencies obtained using the 3D tool.

Finally, we observe that the resonance frequencies occuring in Fig. 3 (385, 550 and 715 MHz for the

lowest order modes of the loaded cavity according to our model; 387.4, 556.9 and 722.5 MHz according to

the CONCEPT II simulations) differ – as we could reasonably have expected – from the resonance
Fig. 2. Example geometry 1.
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Fig. 3. Current induced on DUT (geometry 1).
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frequencies of the empty cavity, which are 367.2, 519.3, 636.0 MHz, respectively, for the TM11-mode, for the

TM21-mode and for the TM12-mode. The singularity in the interaction (10) and excitation (11) integrals – due

to the singularity in the Green�s function (5) at these frequencies – does not have any effect on the results

computed with our method.

4.2. A second example

In the second example configuration shown in Fig. 4, we again compare our results to those obtained

using the 3D tool CONCEPT II at low frequencies (dimensions at the highest frequency are of the order

2k).
The cavity is 2.718 m long by 2 m wide (and 0.5 m high in the 3D simulation). The excitation is a 1 A line

current source I1 located at 0.5 m from both left and front walls. Symmetrically placed, at the back of the
cavity, is a small square conductor c1 with side 1 mm. Another, larger, conductor c2, with dimensions 0.12

m by 0.05 m has its centre at 0.6 m from the right wall, exactly in the middle between front and back walls

of the cavity. We also compute the longitudinal electric field Ez on an observation line at a 1 m distance

from the left wall, over the full width of the cavity.
Fig. 4. Example geometry 2.
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In the 3D model, we replace the excitation line current by a wire with radius 0.5 mm on which a constant

1 A current is impressed, and we replace the small square conductor by a wire with radius 0.5 mm. Both

these wires and the rectangular conductor c2 connect top and bottom of the cavity. This purely TM exci-
tation of the cavity should be comparable to the 2D model.

Fig. 5 shows the amplitude of the return current – 0 dB corresponds to 1 A – on conductor c1 according
to both our model and the 3D MoM model at relatively low frequencies. Once again, the agreement be-

tween the two models is excellent, within a 1 dB error margin. As in the first example, we observe the shift

toward higher frequencies of the resonance peaks in the CONCEPT II simulations.

We have also compared the results of both simulation methods for the computed longitudinal electric

field Ez in two test points of the cavities. First point P1 was located on the observation line at a distance of

0.20 m from the front wall. The second point P2 was placed at 1 m from both front and back walls on that
same observation line. The results for point P1 and point P2 are shown, respectively, in Figs. 6 and 7, where

0 dB corresponds to 1 V/m. Here again, the agreement between both modelling techniques is excellent,

within 1 dB.
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As in the first example, the resonance frequencies of the empty reverberation cavity – 93.1, 133.4 and
159.7 MHz, respectively, for the TM11-mode, for the TM21-mode and for the TM12-mode – are not observed

in the graphs for the induced currents (Fig. 5) or fields (Figs. 6 and 7), although they generate a singularity

in the Green�s function (5). The real resonance frequencies of the loaded cavity are observed at 101.4, 151.0

and 162.0 MHz in our model (101.9, 151.7 and 163.1 MHz in the CONCEPT II simulation).

Finally, we also show some results obtained at higher frequencies, illustrating the fact that our method is

not limited to the low frequency modelling of the cavity. In Fig. 8, we show the amplitude of the induced

current – 0 dB corresponds to 1 A – on both conductors c1 and c2 over a frequency range from 2.4 to 2.5

GHz, with a 1 MHz frequency step. At these frequencies the cavity dimensions are about 22k by 16k. The
behaviour of the induced currents as a function of frequency becomes sensibly more complex than it was at

lower frequencies (cf. Fig. 5). This is what we expected, as the number of resonance frequencies per fre-

quency interval increases with increasing frequency. At these frequencies, a statistical description of the

fields and currents in the cavity will probably be an acceptable approximation.
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We also show in Fig. 9 the behaviour of the longitudinal electric field along the observation line con-

necting front and back walls (cf. Fig. 4) at three discrete frequency points (2.4, 2.45 and 2.5 GHz). At these

high frequencies, the field patterns are strongly dependent on the exact frequency, and the fields are only

correlated over a very short range.
5. Conclusion

We have presented a two-dimensional modelling technique based on the method of moment to solve the

electromagnetic problem of a large cavity. No a priori assumptions about a possible statistical behaviour of

the fields and currents in the cavities are needed.

Instead of using the free space Green�s function, we have considered the Green�s function of the empty

cavity, which allows us to avoid the explicit discretisation of the cavity walls and so to reduce the number of
unknowns of the problem significantly. This will allow for a reduction of the total computation time, es-

pecially if the objects within the cavity are small compared to the cavity dimensions.

We have shown how to compute the sometimes very slowly converging series expressions for the Green�s
function and the resulting excitation and interaction integrals, combining straightforward computation,

classical series acceleration techniques and a modified version of the Veysoglu integral transform.

At sufficiently low frequencies, the method was succesfully compared to a 3D MoM tool and the method

has been shown to work for large 2D structures (over 375k2).
Appendix A. Modal integrals

In a similar way as we computed the series terms (16), we can analytically compute the series terms of

interaction and excitation integrals for other configurations of observation and excitation segments.

For the case where the excitation segment is parallel with the x-axis and the observation segment is

parallel with the y-axis, we must distinguish three cases.
In the first case, where the excitation segment is lower than the observation segment ðye 6 yo1 < yo2Þ, we

obtain the following modal interaction integral:
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where ðxe1; yeÞ and ðxe2; yeÞ, respectively, are the start and the end coordinates of the considered excitation

segment, and where ðxo; yo1Þ and ðxo; yo2Þ, respectively, are the start and the end coordinates of the con-

sidered observation segment.

In the second case, where the excitation segment is higher than the observation segment ðyo1 < yo2 6 yeÞ,
we obtain for the modal interaction integral the same expression as in (A.1), in which we should replace ye
by b� ye, yo1 by b� yo2, and yo2 by b� yo1.

The third case is when the y-coordinate of the excitation segment lies between the y-coordinates of the
start and end points of the observation segment ðyo1 6 ye 6 yo2Þ. We then obtain the following modal in-

teraction integral:
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When the excitation segment is parallel with the y-axis and the observation segment is parallel with the x-
axis, we obtain the same expressions as (A.1) and (A.2), in which we would have permuted the indices ‘‘e’’

and ‘‘o’’.

For a configuration where both excitation and observation segments are parallel with the y-axis, we
obtain the following expression for the modal interaction integral:
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where ðxe; ye1Þ and ðxe; ye2Þ, respectively, are the start and the end coordinates of the considered excitation

segment, where ðxo; yo1Þ and ðxo; yo2Þ, respectively, are the start and the end coordinates of the considered

observation segment, and where dover is the overlapping distance between the projections of excitation and
observation segments on the y-axis. We can consider six different situations:
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ye2 > ye1 P yo2 > yo1 ) dover ¼ 0; ðA:4Þ
ye2 P yo2 > yo1 P ye1 ) dover ¼ yo2 � yo1; ðA:5Þ
ye2 P yo2 > ye1 P yo1 ) dover ¼ yo2 � ye1; ðA:6Þ
yo2 > yo1 P ye2 > ye1 ) dover ¼ 0; ðA:7Þ
yo2 P ye2 > ye1 P yo1 ) dover ¼ ye2 � ye1; ðA:8Þ
yo2 P ye2 > yo1 P ye1 ) dover ¼ ye2 � yo1: ðA:9Þ

Regarding the excitation integrals, we first consider the case of an observation segment parallel with the x-
axis. Using ðxe; yeÞ for the coordinates of the excitation point, and ðxo1; yoÞ and ðxo2; yoÞ for the coordinates
of the start point, respectively, the end point of the observation segment, we obtain the following expression

for the excitation integral:
vðaÞXo ;m ¼
cos kðaÞm b� ðyo þ yeÞð Þ

� �
� cos kðaÞm b� jyo � yejð Þ

� �
2 pm

a

� �
kðaÞm sin kðaÞm b

h i sin
pm
a

ðxo2
�n

� xeÞ
	

� sin
pm
a

ðxo1
�

� xeÞ
	
� sin

pm
a

ðxo2
�

þ xeÞ
	
þ sin

pm
a

ðxo1
�

þ xeÞ
	o

: ðA:10Þ
When the observation segment is parallel with the y-axis, we distinguish three cases for the computation of

the modal excitation integral. We use the notation ðxo; yo1Þ and ðxo; yo2Þ for the coordinates of the start

point, respectively, the end point of the observation segment.

The first case is when the excitation point is located above the observation segment (ye P yo2 > yo1). We

then obtain
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In a second case, we consider the configuration where the excitation point is located below the observation

segment (yo2 > yo1 P ye). We obtain the same expression as (A.11), but after we have replaced ye by b� ye,
yo1 by b� yo2, and yo2 by b� yo1.

The last case is when the y-coordinate of the excitation point lies between the y-coordinates of the start
and end points of the observation segment ðyo1 6 ye 6 yo2Þ. We then obtain the following modal excitation

integral:
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Appendix B. Series computation

The modal interaction integrals (16) generated terms of type (18) for large values of the mode order m.
We can derive similar expressions for the different kinds of interaction and excitation integrals, using the

same notations as in (18).
The modal interaction integrals (A.1) will behave as

C
exp � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p� 	
m m2 � a2ð Þ sinðmcÞ ðB:1Þ

for high mode order values. The same behaviour will be observed for the interaction integrals (A.2).

The modal interaction integrals (A.3) will behave as

C
exp � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p� 	
ðm2 � a2Þ3=2

cosðmcÞ ðB:2Þ

with some additional terms behaving as

C
1

ðm2 � a2Þ cosðmcÞ: ðB:3Þ

The high order behaviour of the modal excitation integrals (A.10) is described by

C
exp � b
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For the other kinds of excitation integrals (A.11) and (A.12) we observe the following behaviour:

C
exp � b
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m2 � a2

cosðmcÞ: ðB:5Þ

Note that we can consider (B.3) as a variant of this expression, with b ¼ 0.

Finally, we also observe that the modal Green�s function gðaÞm (6) – which we need to compute if we want

to calculate the field in some point of the structure using (8) – behaves for large m as

C
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The convergence behaviour of the different series (B.1), (B.2), (B.4), (B.5) or (B.6) is very similar to the

convergence behaviour of the already discussed series (18). We can easily compute these series by direct
summation when the product ab is sufficiently large (ab > 5), or using a classical Shanks transformation

when c is sufficiently large (j sin cj > 0:1). When both c and ab are small, we shall use the modified Veysoglu

integral transforms (28) and (29) to compute the series value.

The functions FC and FS still have the same meaning as in (30) and in (31). The series (B.1) can then be

rewritten as
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in which F ðaÞ
YX ;m is defined as
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Similarly, the Veysoglu transform applied on (B.2) yields
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For the modal interactions series (B.4), we thus obtain
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where the function F ðaÞ
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The series (B.5) becomes
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Y ;m as a shorthand notation for
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Finally, the series (B.6) for the Green�s function terms yields
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where we define F ðaÞ
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As for (34), the expressions (B.8), (B.10), (B.12) or (B.14) obtained from the Veysoglu transform are not im-

mediately useful, as their computation is not totally straightforward, with the exception of (B.16). This means

that we shall apply the Laplace transform on the series expansions instead of applying it on the function itself.
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Instead of the expression (B.8), we obtain from the series expansion:
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the following series expansion for F ðaÞ
YX ;m:
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where – as in (36) – the notation f ðaÞ
YX ;mða; b; u; d; d0; dð2Þ; . . .Þ stands for a sum of terms containing Dirac

distributions and their derivatives. For the same reasons as in (36), this term does not contribute to the

integral (B.7).

Similarly, using in (B.9) the following series expansion:
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we obtain for F ðaÞ
YY ;m the series
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YY ;mða; b; uÞ ¼ � ab

2a2
ð1� e�2auÞ þ 1

a2
X1
n¼�1

ð�1Þn ðabÞ2nþ2

2nþ1ð2nþ 1Þðnþ 1Þ! e
�au InðauÞ

ðauÞn

þ f ðaÞ
YY ;mða; b; u; d; d0; dð2Þ; . . .Þ ðB:20Þ

with the now familiar notation f ðaÞ
YY ;mða; b; u; d; d0; dð2Þ; . . .Þ for a term yielding no contribution to (B.9).

Applying to the modal interactions series (B.11) a similar series expansion

exp � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

ph i
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p ¼ 1

s

X1
n¼0

b2n

ð2nÞ! ðs
2 � a2Þn�1=2 � 1

s

X1
n¼0

b2nþ1

ð2nþ 1Þ! ðs
2 � a2Þn ðB:21Þ

yields the following expression for F ðaÞ
X ;m:

F ðaÞ
X ;mða; b; uÞ ¼ � e�au sinðabÞ

a
þ 1

a

X1
n¼0

ð�1Þn ðabÞ
2n

2n n!
e�au

Z au

0

InðvÞ
vn

dv

þ f ðaÞ
X ;mða; b; u; d; d0; dð2Þ; . . .Þ ðB:22Þ

again with a term f ðaÞ
X ;mða; b; u; d; d0; dð2Þ; . . .Þ yielding no contribution to (B.11).

Finally, we apply the same method on (B.5), and with the series expansion

exp � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

ph i
ðs2 � a2Þ ¼ 1

s2 � a2
�
X1
n¼0

b2nþ1

ð2nþ 1Þ! s2
�

� a2
�n�1=2 þ

X1
n¼0

b2nþ2

ð2nþ 2Þ! ðs
2 � a2Þn ðB:23Þ

we obtain a new expression for F ðaÞ
Y ;m:
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F ðaÞ
Y ;mða; b; uÞ ¼

ð1� e�2auÞ
2a

þ 1

a

X1
n¼0

ð�1Þnþ1 ðabÞ2nþ1

2nð2nþ 1Þn! e
�au InðauÞ

ðauÞn þ f ðaÞ
Y ;mða; b; u; d; d0; dð2Þ; . . .Þ: ðB:24Þ

What was said about the convergence behaviour of (36) could be repeated here for the series (B.18), (B.20),

(B.22) and (B.24). They converge rapidly for small values of the product ab (ab < 5), even when the series is

slowly oscillating (j sin cj < 0:1). These series are computed in a similar way as (36), combining the re-

currence formulas for modified Bessel functions (37) and (38) with the use of a generalised Clenshaw�s
recurrence formula [58]. For these operations, we do not need the implementation of other special functions

than those we already needed for the computation of (36).
The integration (B.7), (B.9), (B.13), (B.11) or (B.15) is computed in an analogous way to (32).
Appendix C. Contribution of the Dirac distributions

In (36) – and later in the similar expressions (B.18), (B.20), (B.22) and (B.24) – we introduced a sum of

terms f ðaÞ
XX ;mða; b; u; d; d0; dð2Þ; . . .Þ containing Dirac distributions and their derivatives. Here, we shall discuss

the origin of these Dirac distributions and their contribution to the integral (32).
We know from [57] that for uP 0

L�1 ðs2
h

� a2Þ�1=2
i
ðuÞ ¼ I0ðauÞ ðC:1Þ

while for u < 0 the function is zero. This means we can rewrite (C.1) for all possible argument values u
as

L�1 ðs2
h

� a2Þ�1=2
i
ðuÞ ¼ I0ðauÞHðuÞ; ðC:2Þ

where HðuÞ is the Heaviside distribution.

Taking into account that for a two-sided Laplace transform (24)

L�1 ðs2
�

� a2ÞF ðsÞ
�
ðuÞ ¼ d2

du2

�
� a2

�
L�1½F ðsÞ�ðuÞ ðC:3Þ

it is possible to prove by recursion that

L�1 ðs2
h

� a2Þn�1=2
i
ðuÞ ¼ ð�1Þna2nð2nþ 1Þ!

2n n!
InðauÞ
ðauÞn HðuÞ

þ
Xn�1

k¼0

ð�1Þkdð2n�2k�1ÞðuÞ a2kð2nÞ!ðn� kÞ!
22kð2n� 2kÞ!n!k! ðC:4Þ

using the property of modified Bessel functions that InðauÞ=ðauÞn is a solution of the differential equation:

d2f
du2

ðuÞ þ 2nþ 1

u
df
du

ðuÞ � a2f ¼ 0 ðC:5Þ

and using the expression for the derivatives of modified Bessel functions

dIn
du

ðuÞ ¼ Inþ1ðuÞ þ
n
u
InðuÞ: ðC:6Þ

Similarly, we can prove by recursion that
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L�1 ðs2
�

� a2Þn
�
ðuÞ ¼

Xn

k¼0

ð�1Þkdð2n�2kÞðuÞ a2kðnÞ!
k!ðn� kÞ! ðC:7Þ

starting from the basic inverse Laplace transform

L�1½1�ðuÞ ¼ dðuÞ ðC:8Þ

and using (C.3).

The presence of an additional factor 1=s (in (B.17) or (B.21)) or 1=s2 (in (35)) merely means integrating

expressions (C.4) or (C.7) once or twice.

However, the delta functions occuring in (C.4) or (C.7) do not contribute to the integral (36). If b > 0 we

know from the explicit expression (34) that F ðaÞ
XX ;mða; b; uÞ ¼ 0 (or similar functions) for u6 b. So, the net

contribution of the Dirac distribution singularities at u ¼ 0 must vanish. For the special case b ¼ 0, the

series (35) reduces to 1=s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p
, which does not yield any Dirac distributions (or derivatives of it) in the

computation of the inverse Laplace transformation.

A similar reasoning holds for the other integrals (B.18), (B.20), (B.22) or (B.24), using the respective

explicit expressions (B.8), (B.10), (B.12) or (B.14).
References

[1] E. Laermans, F. Olyslager, D. De Zutter, A two-dimensional model for reverberant chambers, in: Proceedings of the 4th

European Symposium on EMC, Brugge, Belgium, 2000, pp. 269–273.

[2] P. Corona, G. Latmiral, E. Pasolini, L. Piccioli, Use of a reverberating enclosure for measurements of radiated power in the

microwave range, IEEE Trans. Electromagn. Compat. 18 (2) (1976) 54–59.

[3] M.O. Hatfield, Shielding effectiveness measurements using mode-stirred chambers: a comparison of two approaches, IEEE Trans.

Electromagn. Compat. 30 (3) (1988) 229–238.

[4] P. Corona, J. Ladbury, G. Latmiral, Reverberation-chamber research-then and now: a review of early work and comparison with

current understanding, IEEE Trans. Electromagn. Compat. 44 (1) (2002) 87–94.

[5] L.R. Arnaut, Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies, IEEE

Trans. Electromagn. Compat. 43 (4) (2001) 637–653.

[6] L.R. Arnaut, Compound exponential distributions for undermoded reverberation chambers, IEEE Trans. Electromagn. Compat.

44 (3) (2002) 442–457.

[7] D.A. Hill, Electronic mode stirring for reverberation chambers, IEEE Trans. Electromagn. Compat. 36 (4) (1994) 294–299.

[8] Y. Huang, D.J. Edwards, A novel reverberating chamber: the source-stirred chamber, in: Proceedings of the 1992 IEEE

International Symposium on EMC, 1992, pp. 120–124.

[9] F.B.J. Leferink, High field strength in a large volume: the intrinsic reverberation chamber, in: Proceedings of the 1998 IEEE

International Symposium on EMC, Denver, CO, 1998, pp. 24–27.

[10] F.B.J. Leferink, J.-C. Boudenot, W. van Etten, Experimental results obtained in the vibrating intrinsic reverberation chamber, in:

Proceedings of the 2000 IEEE International Symposium on EMC, Washington, DC, 2000, pp. 639–644.

[11] N.K. Kouveliotis, P.T. Trakadas, C.N. Capsalis, Examination of field uniformity in vibrating intrinsic reverberation chamber

using the FDTD method, Electron. Lett. 38 (3) (2002) 109–110.

[12] N.K. Kouveliotis, P.T. Trakadas, C.N. Capsalis, FDTD calculation of quality factor of vibrating intrinsic reverberation chamber,

Electron. Lett. 38 (16) (2002) 861–862.

[13] M.O. Hatfield, M.B. Slocum, Frequency characterization of reverberation chambers, in: Proceedings of the 1996 IEEE

International Symposium on EMC, Santa Clara, CA, 1996, pp. 190–193.

[14] J.G. Kostas, B. Boverie, Statistical model for a mode-stirred chamber, IEEE Trans. Electromagn. Compat. 33 (4) (1991) 366–370.

[15] P. Corona, G. Ferrara, M. Migliaccio, Reverberating chambers as sources of stochastic electromagnetic fields, IEEE Trans.

Electromagn. Compat. 38 (3) (1996) 348–356.

[16] P. Corona, G. Ferrara, M. Migliaccio, On the characterisation of the electromagnetic field in reverberating chambers, in:

Proceedings of the 1997 Z€urich EMC Symposium, Z€urich, Switzerland, 1997, pp. 465–468.

[17] G.J. Freyer, T.H. Lehman, J.M. Ladbury, G.H. Koepke, M.O. Hatfield, Verification of fields applied to and EUT in a

reverberation chamber using statistical theory, in: Proceedings of the 1998 IEEE International Symposium on EMC, Denver, CO,

1998, pp. 34–38.



E. Laermans et al. / Journal of Computational Physics 198 (2004) 326–348 347
[18] D.A. Hill, Linear dipole response in a reverberation chamber, IEEE Trans. Electromagn. Compat. 41 (4) (1999) 365–368.

[19] P. Corona, G. Ferrara, M. Migliaccio, Reverberating chamber electromagnetic field in presence of an unstirred component, IEEE

Trans. Electromagn. Compat. 42 (2) (2000) 111–115.

[20] L.K. Warne, K.S.H. Lee, Some remarks on antenna response in a reverberation chamber, IEEE Trans. Electromagn. Compat. 43

(2) (2001) 239–240.

[21] T.H. Lehman, G.J. Freyer, M.O. Hatfield, J.M. Ladbury, G.H. Koepke, Verification of fields applied to an EUT in a

reverberation chamber using numerical modeling, in: Proceedings of the 1998 IEEE International Symposium on EMC, Denver,

CO, 1998, pp. 28–33.

[22] D.A. Hill, M.T. Ma, A.R. Ondrejka, B.F. Riddle, M.L. Crawford, R.T. Johnk, Aperture excitation of electrically large, lossy

cavities, IEEE Trans. Electromagn. Compat. 36 (3) (1994) 169–177.

[23] D.A. Hill, A reflection coefficient derivation for the Q of a reverberation chamber, IEEE Trans. Electromagn. Compat. 38 (4)

(1996) 591–592.

[24] D.A. Hill, Plane wave integral representation for fields in reverberation chambers, IEEE Trans. Electromagn. Compat. 40 (3)

(1998) 209–217.

[25] D.A. Hill, J.M. Ladbury, Spatial-correlation functions of fields and energy density in a reverberation chamber, IEEE Trans.

Electromagn. Compat. 44 (1) (2002) 95–101.

[26] D.-H. Kwon, R.J. Burkholder, P.H. Pathak, Ray analysis of electromagnetic field build-up and quality factor of electrically large

shielded enclosures, IEEE Trans. Electromagn. Compat. 40 (1) (1998) 19–26.

[27] M. Ho€eppe, S. Baranowski, P.N. Gineste, B. Demoulin, Use of a statistical gauge to test theoretical simulations of the field

distribution in oversized electromagnetic cavities, in: Proceedings of the 4th European Symposium on EMC, Brugge, Belgium,

2000, pp. 557–561.

[28] K.R. Goldsmith, P.A. Johnson, Design, construction, computational EM modelling, and characterisation of an aircraft sized

reverberation chamber and stirrer, in: Proceedings of the 17th Digital Avionics Systems Conference, Belleview, WA, 1998, pp.

D55/1–D55/8.

[29] H.-J. Asander, G. Eriksson, L. Jansson, H. Akermark, Field uniformity analysis of a mode stirred reverberation chamber using

high resolution computational modeling, in: Proceedings of the 2002 IEEE International Symposium on EMC, Minneapolis, MN,

2002, pp. 285–290.

[30] C. Bruns, P. Leuchtmann, R. Vahldieck, Three-dimensional method of moments simulation of a reverberation chamber in the

frequency domain, in: Proceedings of the 2003 Z€urich EMC Symposium, Z€urich, Switzerland, 2003, pp. 229–232.
[31] M. Ho€eppe, P.N. Gineste, B. Demoulin, Numerical modelling for mode-stirred reverberation chambers, in: Proceedings of the

2001 Z€urich EMC Symposium, Z€urich, Switzerland, 2001, pp. 635–640.

[32] C.R. Suriano, G.A. Thiele, J.R. Suriano, Low frequency behavior of a reverberation chamber with monopole antenna, in:

Proceedings of the 2000 IEEE International Symposium on EMC, Washington, DC, 2000, pp. 645–650.

[33] A.J.M. Williams, A.P. Duffy, R.A. Scaramuzza, A modelling approach to determining the effective working volume of a mode-

stirred chamber, in: Proceedings of the 1997 IEEE International Symposium on EMC, Austin, TX, 1997, pp. 187–192.

[34] W. Petirsch, A.J. Schwab, Investigation of the field uniformity of a mode-stirred chamber using diffusers based on acoustic theory,

IEEE Trans. Electromagn. Compat. 41 (4) (1999) 445–451.

[35] S.-Y. Chung, J.-G. Rhee, H.-J. Rhee, K.-S. Lee, Field uniformity characteristics of an asymmetric structure reverberation

chamber by FDTD method, in: Proceedings of the 2001 IEEE International Symposium on EMC, Montr�eal, Canada, 2001, pp.

429–434.

[36] M. H€oijer, A.-M. Andersson, O. Lund�en, M. B€ackstr€om, Three-dimensional finite difference time domain analysis of

reverberation chambers, in: Proceedings of the 4th European Symposium on EMC, Brugge, Belgium, 2000, pp. 263–268.

[37] M. H€oijer, A.-M. Andersson, O. Lund�en, M. B€ackstr€om, Numerical simulations as a tool for optimizing the geometrical design of

reverberation chambers, in: Proceedings of the 2000 IEEE International Symposium on EMC, Washington, DC, 2000, pp. 1–6.

[38] D. Zhang, J. Song, Impact of stirrers� position on the properties of a reverberation chamber with two stirrers, in: Proceedings of

the 2000 IEEE International Symposium on EMC, Washington, DC, 2000, pp. 7–10.

[39] K. Harima, Y. Yamanaka, FDTD analysis on the effect of stirrers in a reverberation chamber, in: Proceedings of the 1999 IEEE

International Symposium on EMC, Seattle, WA, 1999, pp. 260–263.

[40] L. Bai, L. Wang, B. Wang, J. Song, Reverberation chamber modeling using fdtd, in: Proceedings of the 1999 IEEE International

Symposium on EMC, Seattle, WA, 1999, pp. 7–11.

[41] C. Carlsson, A. Wolfgang, P.-S. Kildal, Numerical FDTD simulations of a validation case for small antenna measurements in a

reverberation chamber, in: Proceedings of the 2002 IEEE AP-S International Symposium, San Antonio, TX, 2002,

pp. 482–485.

[42] F. Moglie, Finite difference, time domain analysis convergence of reverberation chambers, in: Proceedings of the 2003 Z€urich

EMC Symposium, Z€urich, Switzerland, 2003, pp. 228–231.
[43] J. Clegg, A.C. Marvin, J.A.S. Angus, J.F. Dawson, Method for increasing the mode density in a reverberant screened room, IEE

Proc. Sci. Meas. Technol. 143 (4) (1996) 216–220.



348 E. Laermans et al. / Journal of Computational Physics 198 (2004) 326–348
[44] C.F. Bunting, K.J. Moeller, C.J. Reddy, S.A. Scearce, Finite element analysis of reverberation chambers: a two-dimensional study

at cutoff, in: Proceedings of the 1998 IEEE International Symposium on EMC, Denver, CO, 1998, pp. 208–212.

[45] C.F. Bunting, Two-dimensional finite element analysis of reverberation chambers: the inclusion of a source and additional aspects

of analysis, in: Proceedings of the 1999 IEEE International Symposium on EMC, Seattle, WA, 1999, pp. 219–224.

[46] C.F. Bunting, K.J. Moeller, C.J. Reddy, S.A. Scearce, A two-dimensional finite-element analysis of reverberation chambers, IEEE

Trans. Electromagn. Compat. 41 (4) (1999) 280–289.

[47] C.F. Bunting, Shielding effectiveness, statistical characterization, and the simulation of a two-dimensional reverberation chamber

using finite element techniques, in: Proceedings of the 19th Digital Avionics Systems Conference, 2000, Philadelphia, PA, 2000, pp.

3A5/1–3A5/8.

[48] C.F. Bunting, Shielding effectiveness in a reverberation chamber using finite element techniques, in: Proceedings of the 2001 IEEE

International Symposium on EMC, Montr�eal, Canada, 2001, pp. 740–745.

[49] C.F. Bunting, Statistical characterization and the simulation of a reverberation chamber using finite-element techniques, IEEE

Trans. Electromagn. Compat. 44 (1) (2002) 214–221.

[50] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955) 1–42.

[51] S. Singh, R. Singh, On the use of Shanks�s transform to accelerate the summation of slowly converging series, IEEE Trans.

Microwave Theory Tech. 39 (3) (1991) 608–610.

[52] M.E. Veysoglu, H.A. Yueh, R.T. Shin, J.A. Kong, Polarimetric passive remote sensing of periodic surfaces, J. Electromagn.

Waves Appl. 5 (3) (1991) 267–280.

[53] A.W. Mathis, A.F. Peterson, A comparison of acceleration procedures for the two-dimensional periodic Green�s functions, IEEE
Trans. Antennas Propag. 44 (4) (1996) 567–571.

[54] T. Mader, H.D. Br€uns, EFIE analysis of arbitrary metallic structures in the area of EMC, in: Proceedings of the 9th International

Symposium on EMC, Z€urich, Switzerland, 1991, pp. 457–461.

[55] E. Laermans, D. De Zutter, Modelled field statistics in two-dimensional reverberation chambers, in: Proceedings of the 5th

European Symposium on EMC, Sorrento, Italy, 2002, pp. 41–44.

[56] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, international student ed., McGraw-Hill, New York, 1953, p. 1365.

[57] G.E. Roberts, H. Kaufman, Table of Laplace Transforms, Saunders, Philadelphia and London, 1966.

[58] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Advanced

Mathematics, Cambridge University Press, Cambridge, UK, 1992, pp. 181–183.

[59] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,

Advanced Mathematics, Dover, New York, 1965, p. 376.

[60] J. Ureel, N. Fach�e, D. De Zutter, P. Lagasse, Adaptive frequency sampling of scattering parameters obtained by electromagnetic

simulation, in: Proceedings of the 1994 IEEE AP-S International Symposium, Seattle, WA, 1994, pp. 1162–1165.

[61] F. Olyslager, E. Laermans, D. De Zutter, S. Criel, R. De Smedt, N. Lietaert, A. De Clercq, Numerical and experimental study of

the shielding effectiveness of a metallic enclosure, IEEE Trans. Electromagn. Compat. 41 (3) (1999) 202–213.


	Two-dimensional method of moments modelling of lossless overmoded transverse magnetic cavities
	Introduction
	Geometry
	The method
	Green&rsquo;s function and integral equation
	Modal integrals
	Series computation
	CPU time requirements

	Numerical results
	Validation
	A second example

	Conclusion
	Modal integrals
	Series computation
	Contribution of the Dirac distributions
	References


